

Directivity of shear waves in thermoelastic regime

Xin Tu <u>xt16846@bristol.ac.uk</u> Paul Wilcox Alberto Gambaruto Jie Zhang

Contents

- Context and aim
- Methodology
- Results and discussion
- Summary and future work

- Laser induced ultrasonic waves in thermoelastic regime
- Shear waves commonly used for defect detection

- Directivity of shear waves
- Angle-dependent amplitude
- Indicate the strength of the signal at different angles

- Head wave interference
- Same velocity as shear wave inside material
- Different wavefront and decay rate from shear wave [1]

[1] Fradkin, Larissa Ju, and Aleksei P. Kiselev. "The twocomponent representation of time-harmonic elastic body waves in the high-and intermediate-frequency regimes." *The Journal of the Acoustical Society of America 101*, no. 1 (1997): 52-65.

bristol.ac.uk

x: horizontal distance from centre *r*: distance from centre

- Obtain a directivity independent of radial distances from source
- Without using a large simulation domain

- Simulation of ultrasound generation (Model 1)
- Simulate a head wave dominated wave field (Model 2)
- By suppressing the initial displacement contributing to shear waves
- Subtract head wave field from Model 1

After subtraction

- Benchmark analytical solution [2]
- Assumptions:
 - Force dipole
 - Acting on surface
 - Isotropic, homogenous material
- Independent of source temporal profile and frequency content

 $G_T(\theta) \propto \frac{\sin 2\theta \cos 2\theta}{\cos^2 2\theta + 2 \sin \theta \sin 2\theta (\kappa^{-2} - \sin^2 \theta)^{1/2}},$ $\kappa = c_L/c_T$ [2] Bernstein Johanna

 θ : observation angle c_L : velocity of longitudinal wave c_T : velocity of shear wave

bristol.ac.uk

[2] Bernstein, Johanna R., and James B. Spicer. "Line source representation for laser-generated ultrasound in aluminum." The Journal of the Acoustical Society of America 107, no. 3 (2000): 1352-1357.

9

- 2D domain $(10mm \times 10mm)$, symmetrical about central axis
- Boundary conditions and loading:
 - Model 1: point load at nearest node to centre tangential to surface, broadband signal
 - Model 2: surface displacement taken from Model 1, displacement at centre damped
- Mesh: linear elements, 30 elements per shear wavelength at frequency of 10MHz
- Time step: 5*e* − 9*s*
- Material: Aluminium, isotropic
 - Poisson's ratio: v = 0.33
 - Young's modulus: E = 69GPa

- Boundary conditions and loading:
 - **Model 1:** point load at nearest node to centre tangential to surface, broadband signal
 - **Model 2:** surface displacement taken from Model 1, displacement at centre damped
- Mesh: linear elements, 30 elements per shear wavelength at frequency of 10MHz
- Time step: 5*e* − 9*s*
- Material: Aluminium, isotropic
 - Poisson's ratio: v = 0.33
 - Young's modulus: E = 69GPa

 Apply temporal smooth step to damp initial displacement

•
$$S_1(x) = \begin{cases} 0 & x \le 0\\ 3x^2 - 2x^3 & 0 \le x \le 1, \\ 1 & 1 \le x \\ x = t/\tau \end{cases}$$

- The first derivative is continuous x: adjustal
 - *x*: adjustable parameter of the smooth step
 - t: observation time
 - τ : duration of frequency filtered shear wavepacket

 Apply temporal smooth step to damp initial displacement

•
$$S_1(x) = \begin{cases} 0 & x \le 0\\ 3x^2 - 2x^3 & 0 \le x \le 1, \\ 1 & 1 \le x \\ x = t/\tau \end{cases}$$

The first derivative is

continuous

- *x*: adjustable parameter of the smooth step
- *t*: observation time
- τ : duration of frequency filtered shear wavepacket

shear wavepacket

- Determine the length of smooth step
- The duration of generated shear wave is $\tau = 6.67e 7s$
- Ideally the smooth step would cover the entire duration
- $x = t/\tau = 1$ fits best to analytical solution

 Extract waves from displacements – curl of displacement, rotational motion

$$\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$

- Gaussian frequency filter
 - -Centre frequency = 7.5MHz
 - -Bandwidth = 5*MHz*

- Subtraction
- Obtain directivity
 - Determine shear wave arrival time from signals at head-wavefree angles
 - Extract amplitude of the signal envelope at this time instance

- Agrees well with the analytical directivity
- Except 25° 30°
- Due to finite separation between point loads, residual shear waves, etc.

bristol.ac.uk

Measured amplitude (arb. units)

- More realistic simulation
- Coupling heat transfer and solid mechanics
- The centre of expansion locates at a small distance below surface
- Boundary condition and loading:
 - Inward heat flux
 - Gaussian profile in space and time
 - Spot size of 0.2mm
 - Pulse duration 20ns
 - Free surface

- More realistic simulation
- Coupling heat transfer and solid mechanics
- The centre of expansion locates at a small distance below surface
- Head wave interference 40° 50°

- Austenitic welds
- Material:
 - Steel, transversely isotropic
 - Elasticity matrix

/ 241.1	96.92	138.03	30	0	0 \	
96.92	241.1	138.03	30	0	0	
138.03	138.03	240.12	2 0	0	0	
0	0	0	112.29	0	0	GPa
0	0	0	0	112.29	0	
\ 0	0	0	0	0 7	72.09/	

- Require more work to determine the shear wave arrival time, separation of quasi- longitudinal and shear waves, etc.
- Need to rethink the definition of directivity

Summary

- The head wave interferes with shear wave, causing the directivity measurement to vary at different radial positions
- A method of subtracting head wave is used to obtain a directivity independent of radial positions without having to run simulations in big domains

Future work

- Experimental validation
- Application to composites

- Backpropagation
 - Use the knowledge of head wave ray path and velocity to calculate arrival time
 - Use a known waveform to subtract from the signal
- Phase shift
- Amplitude
 - Analytical model suggests attenuation of $x^{-3/2}$, but in simulation it does not fit exactly when approaching critical region

- Backpropagation
 - Use the knowledge of head wave ray path and velocity to calculate arrival time
 - Use a known waveform to subtract from the signal
- Phase shift
- Amplitude
 - Analytical model suggests attenuation of $x^{-3/2}$, but in simulation it does not fit exactly when approaching critical region

- Backpropagation
 - Use the knowledge of head wave ray path and velocity to calculate arrival time
 - Use a known waveform to subtract from the signal
- Phase shift
- Amplitude
 - Analytical model suggests attenuation of $x^{-3/2}$, but in simulation it does not fit exactly when approaching critical region

- Separation by angle
- Shear wave has circular wavefront
- Head wave propagates in one direction – plane wave
- Solve two simultaneous equations to obtain the contribution of shear and head wave in u and v
- Less stable in the critical region than subtraction

Derivation

 $\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = (\lambda + \mu)\nabla(\nabla \mathbf{u}) + \mu\nabla^2 \mathbf{u}$ Given $\nabla^2 \mathbf{u} = \nabla(\nabla \cdot \mathbf{u}) - \nabla \times (\nabla \times \mathbf{u})$, so $\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = (\lambda + 2\mu)\nabla(\nabla \mathbf{u}) - \mu\nabla(\times\nabla \times \mathbf{u})$ Let $c_l = \sqrt{\frac{\lambda + 2\mu}{\rho}}, c_s = \sqrt{\frac{\mu}{\rho}},$ $\frac{\partial^2 \mathbf{u}}{\partial t^2} = c_l^2 \nabla(div\mathbf{u}) - c_s^2 \nabla \times curl\mathbf{u}$

Take the divergence and curl of both sides gives

$$c_l^2 \nabla^2 (div\mathbf{u}) = \frac{\partial^2 div\mathbf{u}}{\partial t^2}$$
$$c_s^2 \nabla^2 (curl\mathbf{u}) = \frac{\partial^2 curl\mathbf{u}}{\partial t^2}$$

- Calculate the size of simulation domain that the directivity extracted from original simulation has a head wave interference region as small as the subtracted one
- The directivity currently obtained is valid for 35° onwards
- For head wave interference region to reduce to 35° by decaying, the radius for measuring the directivity is 150mm