Grain-boundary Scattering of Surface Acoustic Waves: Experiment, Theory, and Simulation

Tomáš Grabec, Martin Ryzy, Petr Sedlák, István A. Veres

Institute of Thermomechanics, Czech Acad Sci, Prague, Czechia
RECENDT GmbH, Linz, Austria

(grabec@it.cas.cz)
Outline

- Grain-Boundary Scattering of Longitudinal Bulk Waves
- Grain-Boundary Scattering of Surface Acoustic Waves
FEM simulation of L-wave scattering

- Virtual polycrystal: Voronoi tessellation
- Time-domain FEM simulation of L-wave propagation

8000 grains
1 × 2 × 2 mm³

375 mil. DoF (12 runs)
el. size 3.2 μm, time step 0.4 ns

Tessellation Software: Neper
FEM Software: PzFlex

FEM simulation of L-wave scattering

- Virtual polycrystal: Voronoi tessellation
- Time-domain FEM simulation of L-wave propagation

8000 grains
$1 \times 2 \times 2 \text{ mm}^3$

375 mil. DoF (12 runs)
el. size 3.2 μm, time step 0.4 ns

Tessellation Software: Neper
FEM Software: PzFlex

Time-domain FEM simulation of longitudinal-wave propagation

Coherent wave and attenuation

Same statistics (e.g. mean grain Ø), different microscopic realization

ballistic wave
Coherent wave and attenuation

Same statistics (e.g. mean grain \varnothing), different microscopic realization

Attenuation
- Macroscopic
- Effective medium

‘coherent wave’
Coherent wave and attenuation

Polycrystal
\[\tilde{u}(x, \omega) = ? \]

Coherent wave
\[\langle \tilde{u} \rangle(x, \omega) \propto e^{i(\mathbf{k}x - \omega t)} \]
\[\frac{\omega}{c(\omega)} + i \alpha(\omega) \]

Effective homogeneous medium with only parametrical description of the microstructure

Attenuation
- Macroscopic
- Effective medium

'coherent wave'
Scattering Regimes & Asymptotes

- Relation between attenuation \(\alpha(\omega) \) and microstructure (grain size \(d \))?

 Analytical (attenuation) model

 e.g.: Weaver’s model

\[
\begin{align*}
\lambda &\ll d & \alpha &\propto \frac{1}{d} \\
\lambda &\gg d & \alpha &\propto d^3 f^4 \\
\lambda &\approx d & \alpha &\propto d f^2 \\
\end{align*}
\]
Simulation vs Experiment

- Weak agreement with the model
 - Microstructure description?
 - Mean grain size d
 - and assumed two-point correlation function (TPCF)
 \[w(r) = e^{-r/d} \]

[Weaver's model, FEM]

Simulation vs Experiment

- Weak agreement with the model
 - Microstructure description?
 - Mean grain size d
 - and assumed two-point correlation function (TPCF)
 $$w(r) = e^{-r/d}$$
 - Not in agreement with the TPCF of the tessellation!

Two-point correlation function: the probability that two points separated by r are within the same grain

Weak agreement with the model

- Microstructure description?
 - Mean grain size d
 - and assumed two-point correlation function (TPCF)
 \[W(r) = e^{-r/d} \]
 - Not in agreement with the TPCF of the tessellation!

- Modified Weaver’s model with TPCF of the tessellation

TPCF as the crucial statistical parameter to describe the microstructure with respect to the scattering-induced attenuation!
Outline

- Grain-Boundary Scattering of Longitudinal Bulk waves
- Grain-Boundary Scattering of Surface Acoustic Waves

L. Braile, Purdue University
http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm
Why SAW?

- Bulk-wave attenuation measurement at end points only
Why SAW?

- Bulk-wave attenuation measurement at end points only
- SAW attenuation can be scanned!
 - Similar information as from simulation

- Information from a near-surface layer
 - OK if homogeneous microstructure
 - … Allows to study surface properties if not
 - Penetration depth depends on wavelength
Excitation

- Electro-absorption modulated Laser diode (EML), $\lambda = 1.55\mu m \rightarrow P = 0.2W$
- Erbium doped fiber amplifier (EDFA) $\rightarrow P \leq 1.2W$
- Point-source

Detection

- Michelson interferometer
- Vector network analyzer (phase sensitive detection)
- Point-probe ($\lambda = 532\text{nm}$)

\[\tilde{V}(f) = Re^{i\phi} \propto \tilde{u}_Z(f) \]

Surface normal displacement

[M. Ryzy et al., AIP Advances 8 (2018)]
Frequency-domain laser-ultrasonic setup

Get attenuation?
- Spatial scan
- Scan detection-point

[M. Ryzy et al., AIP Advances 8 (2018)]
Frequency-domain laser-ultrasonic setup

Get attenuation?
- Spatial scan
- Scan detection-point

Get *averaged* attenuation?
- Spatial averaging
- Scan radial lines
Frequency-domain experiment

Frequency range: 10 ... 130MHz ($\Delta f = 2$MHz)
Spatial resolution: 15µm

Sample: Aluminum

$\approx 80 \times 80 \times 12$ mm3

10×20 mm2

mean grain size

$d \approx 94.5$µm
Frequency-domain attenuation

|\tilde{u}| (a.u.)

excitation
detection

[M. Ryzy et al., AIP Advances 8 (2018)]
Experimental results

Two scattering-regimes?
- Stochastic
- Geometric

... but the higher frequencies already strongly attenuated
Two scattering-regimes?

- Stochastic
- Geometric

... but the higher frequencies already strongly attenuated

$c = (2892.8 \pm 4.0)\text{ms}^{-1}$
Assume that attenuation combined in a way similar to velocity

Simple model:
- Modified Weaver’s model
 → bulk-wave attenuation
- Rayleigh equation for surface wave in complex wavenumbers

[M. Ryzy et al., AIP Advances 8 (2018)]
Assume that attenuation combined in a way similar to velocity

Simple model:

- **Modified Weaver’s model** → bulk-wave attenuation
- Rayleigh equation for surface wave in complex wavenumbers

TPCF of the sample necessary!

\[\approx 80 \times 80 \times 12 \text{ mm}^3 \]
Assume that attenuation combined in a way similar to velocity

- **Simple model:**
 - Modified Weaver’s model → bulk-wave attenuation
 - Rayleigh equation for surface wave in complex wavenumbers

- Slightly different power-law dependence in stochastic regime (1.65 vs. 2.0)

- **Oversimplified analytical model or large experimental error?**

[M. Ryzy et al., AIP Advances 8 (2018)]
FEM simulation of SAW scattering

- FEM simulation directly comparable to the experiment? (in a statistical way)
- Model of the sample → Statistical digital twin (Laguerre tessellation)
FEM simulation of SAW scattering

- FEM simulation directly comparable to the experiment? (in a statistical way)
 - Model of the sample → Statistical digital twin (Laguerre tessellation)
 - Broadband excitation:
 - Temporal and spatial gaussian profile

Frequency profile of SAW in homogeneous domain:

$\sim 2 \cdot 10^9$ DoF (60 runs)

elem. size 1.25 μm, time step 0.9 ns

[T. Grabec et al., Ultrasonics 119 (2022)]
FEM simulation of SAW scattering

- FEM simulation directly comparable to the experiment? (in a statistical way)
 - Model of the sample → Statistical digital twin (Laguerre tessellation)
 - Broadband excitation → gaussian

~$2 \cdot 10^9$ DoF (60 runs)
elm. size 1.25 μm, time step 0.9 ns

[T. Grabec et al., Ultrasonics 119 (2022)]
FEM simulation of SAW scattering

- FEM simulation directly comparable to the experiment? (in a statistical way)
 - Model of the sample → Statistical digital twin
 - Broadband excitation → gaussian
 - Large number of repetitive runs to obtain the averaged response

$\sim 2 \cdot 10^9$ DoF (60 runs)
elen . size 1.25 μm, time step 0.9 ns

[T. Grabec et al., Ultrasonics 119 (2022)]
Simulation in great agreement with the experiment! → better than with the model

Both experiment and FEM suggest different slope (power-law exponent) than for bulk waves → more complex analytical description necessary!

Apparent geometric region in experiment not shown by FEM → probably a result of large error in experiment at higher frequencies
Conclusion

- **Analysis of L-wave attenuation:**
 - Importance of two-point correlation function (TPCF) for microstructure description:
 Excellent fit of TPCF-corrected analytical model with FEM simulation

- **SAW attenuation:**
 - Simple model proposed – combining Weaver’s model with Rayleigh equation in complex wavenumbers
 - Frequency-dependent attenuation measured experimentally using laser-ultrasonic setup
 - FEM simulations on sample-mimicking tessellation
 - Excellent agreement between simulation and experiment
Conclusion

- **Analysis of L-wave attenuation:**
 - Importance of two-point correlation function (TPCF) for microstructure description:
 - Excellent fit of TPCF-corrected analytical model with FEM simulation

- **SAW attenuation:**
 - Simple model proposed—combining Weaver’s model with Rayleigh equation in complex wavenumbers
 - Frequency-dependent attenuation measured experimentally using laser-ultrasonic setup
 - FEM simulations on sample-mimicking tessellation
 - Excellent agreement between simulation and experiment

Thank you for attention!