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0 Grain-Boundary Scattering of Longitudinal Bulk Waves

o Grain-Boundary Scattering of Surface Acoustic Waves



FEM simulation of L-wave scattering [é o

[M. Ryzy et al., J. Acoust. Soc. Am. 143, 219 (2018)]

o Virtual pOlycryStaI: Voronoi tessellation Tessellation Software: Neper
FEM Software: PzFlex

o Time-domain FEM simulation
of L-wave propagation
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FEM simulation of L-wave scattering [é o

I [M. Ryzy et al, J. Acoust. Soc. Am. 143, 219 (2018)]
o Virtual pOlycryStaI: Voronoi tessellation Tessellation Software: Neper
. . . . FEM Software: PzFlex
o Time-domain FEM simulation
of L-wave propagation . o) B
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Time-domain FEM simulation of
8000 grains 375 mil. DoF (12 runs) longitudinal-wave propagation

1X2X2mm3 el. size 3.2 um, time step 0.4 ns



Coherent wave and attenuation
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Coherent wave and attenuation
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Coherent wave and attenuation

Polycrystal
i (x,w) =7

Attenuation
o Macroscopic

o Effective medium

- average
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Scattering Regimes & Asymptotes

o Relation between attenuation a(w)

and microstructure (grain size d)?

Analytical
(attenuation)
model

e.g.: Weaver’s model
[Weaver, J. Mech. Phys. Solids 38 (1990)]
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Simulation vs Experiment

[M. Ryzy et al., J. Acoust. Soc. Am. 143, 219 (2018)]
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Simulation vs Experiment

10| [M. Ryzy et al, J. Acoust. Soc. Am. 143, 219 (2018)]
0 Weak agreement with the mOdel Two-point correlation function:
. sLe D) the probability that two points
oMicrostructure description: separated by  are within the
mMean grain size d same grain

and assumed two-point correlation function (TPCF)
w(r) = e /@

mNot in agreement with
the TPCF of the tessellation!
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Simulation vs Experiment
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0 Weak agreement with the model
o Microstructure description? 10 75 em
m Mean grain size d | ---analytical (d)
and assumed two-point correlation function (TPCF) ||~ analytical (tpc)
— p,—r/d FEM
w(r) = e~/ . N
mNot in agreement with 3 10 7 Modified
the TPCF of the tessellation! ;,"' ";‘;f;';!f,“
oModified Weaver’s model /,’ v
with TPCF of the tessellation /7 Weaver's model
4 j'/ / W(r) = e T/d
10 ! A ———
TPCF as the crucial statistical parameter to 1 O0 d () 1 O1

describe the microstructure with respect to
the scattering-induced attenuation!




Outline
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o Grain-Boundary Scattering of Longitudinal Bulk waves

0 Grain-Boundary Scattering of Surface Acoustic Waves

L. Braile, Purdue University
http://web.ics.purdue.edu/~braile/fedumod/waves/WaveDemo.htm



Why SAW? =

0 Bulk-wave attenuation measurement at A e renuation experiment
end points only
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Why SAW?

o Bulk-wave attenuation measurement at A e renuation experiment

end points only
0 SAW attenuation can be scanned!
oSimilar information as from simulation

oinformation from a near-surface layer  exitation detection .
Longitudinal
mOK if homogeneous microstructure - waves

m... Allows to study surface propertiesif not .. ..iccion
mPenetration depth depends on wavelength 1

distance

\

Surface acoustic waves



Frequency-domain laser-ultrasonic setup | = ré o

I [M. Ryzy et al,, AIP Advances 8 (2018)]

Excitation

o Electro-absorption modulated
Laser diode (EML), A = 1.55um
- P=0.2W

o Erbium doped fiber amplifier
(EDFA)
2> P <1.2W

o Point-source

Detection

o Michelson interferometer

il o Vector network analyzer
V(f) — R ei? i, (f) T samlaser (phase sensitive detection)

Surface normal displacement

o Point-probe (4 = 532nm)



Frequency-domain laser-ultrasonic setup | = [é o

electrical line
= Optical fiber
== 532nm laser
—— 1550nm laser

[M. Ryzy et al., AIP Advances 8 (2018)]

Get attenuation?

o Spatial scan
0 Scan detection-point



Frequency-domain laser-ultrasonic setup | = [é o

[M. Ryzy et al., AIP Advances 8 (2018)]

Get attenuation?
o Spatial scan
0 Scan detection-point

Get averaged attenuation?
= Spatial averaging
= Scanradial lines

electrical line
= Optical fiber
== 532nm laser
—— 1550nm laser




Frequency-domain experiment -

I [M. Ryzy et al,, AIP Advances 8 (2018)]
f = 34MHz

excitation

Sample: Aluminum

detectio ~80x80x 12 mm3

mean grain size

d = 94.5um

Frequency range: 10 ... 130MHz (Af = 2MHz)
Spatial resolution: 15um



Frequency-domain attenuation

excitation
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Experimental results -

I [M. Ryzy et al,, AIP Advances 8 (2018)]

Results (linear)
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Experimental results

Results (logarithmic)
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Two scattering-regimes?
o Stochastic
o Geometric

... but the higher

frequencies already
strongly attenuated



Simple theoretical model for SAW [é o

22 | [M. Ryzy et al,, AIP Advances 8 (2018)]
o Assume that attenuation combined in
a way similar to velocity

oSimple model:

m Modified Weaver’s model
— bulk-wave attenuation

mRayleigh equation for surface wave
in complex wavenumbers




Simple theoretical model for SAW Iﬁ o

[M. Ryzy et al., AIP Advances 8 (2018)]
o Assume that attenuation combined in

a way similar to velocity
oSimple model:

mModified Weaver’s model ======) TPCF of the sample
— bulk-wave attenuation necessary!

mRayleigh equation for surface wave
in complex wavenumbers

— micrograph
-=-exponential
08 :\p |

exp(-r/94.5um)

W(r) (1)
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~80x80x 12 mm3



Experiment vs simple model ré o

24 | [M. Ryzy et al,, AIP Advances 8 (2018)]
o Assume that attenuation combined in
a way similar to velocity
10*

DSlmple model: —_ measurement
— analytical (TPCF)

m Modified Weaver’s model
— bulk-wave attenuation 102

' Rayleigh-
mRayleigh equation for surface wave = wave \

in complex wavenumbers £ longitudinal-waye ,
: , o 107

o Slightly different power-law 5 10 20 ]

dependence in stochastic regime : 0\\\ |
(1.65 vs. 2.0) 102 ' :

. .re . 0.5 |
oOversimplified analytical model T e St
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FEM simulation of SAW scattering ré .o

[T. Grabec et al, Ultrasonics 119 (2022)]
o FEM simulation directly comparable to the experiment? (in a statistical way)
oModel of the sample — Statistical digital twin (Laguerre tessellation)

two-point correlation

sample

digital twin 1

50 r (um) 250 300




FEM simulation of SAW scattering ré .o

26 | [T. Grabec et al, Ultrasonics 119 (2022)]
o FEM simulation directly comparable to the experiment? (in a statistical way)
oModel of the sample — Statistical digital twin (Laguerre tessellation)
o Broadband excitation:

m Temporal and spatial gaussian profile

Frequency profile of 0slh
SAW in homogeneous  z g}

domain: S04}
02}
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~2+10° DoF (60 runs)
elem .size 1.25 um, time step 0.9 ns



FEM simulation of SAW scattering [é o

[T. Grabec et al., Ultrasonics 119 (2022)]
o FEM simulation directly comparable to the experiment? (in a statistical way)

oModel of the sample — Statistical digital twin (Laguerre tessellation)

o Broadband excitation — gaussian 5 _ t=092ns | x107"

0 01 0.2 03 04
z (mm)

~2+10° DoF (60 runs)
elem .size 1.25 um, time step 0.9 ns



FEM simulation of SAW scattering ré o

m [T. Grabec et al., Ultrasonics 119 (2022)]
o FEM simulation directly comparable to the experiment? (in a statistical Way)

oModel of the sample — Statistical digital twin
o Broadband excitation — gaussian

o Large number of repetitive runs to obtain
= theaveragedresponse

, ~2-10° DoF (60 runs) 0 0s ; - ; U
elem .size 1.25 um, time step 0.9 ns y (mm)



Simulation vs Experiment vs Model ré o

n [T. Grabec et al., Ultrasonics 119 (2022)]

o Simulation in great agreement with the experiment!
— better than with the model

oBoth experiment and FEM suggest different

slope (power-law exponent) than 104
for bulk waves | measurement

] L |——analytical (TPCF)
— more complex analytical | —Fem

description necessary! 10° |

a(m’)

o Apparent geometric region in
experiment not shown by FEM 102
— probably a result of large error '

in experiment at higher frequencies

f (MHz)



Conclusion s
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0 Analysis of L-wave attenuation: 101575 eraions
[ ===analytical (d)

o Importance of two-point correlation function (TPCF) | —analytica (tp‘c) ) 7
for microstructure description: - S
Excellent fit of TPCF-corrected analytical model with FEM simulation g =

sample microstructure s;catlétléal dlgifal twin| ! two-point correlation ,’/
; S sample j,/l
o B2 digital twin 1 0> !
o SAW attenuation: 0 " 10

0 50 r (um) 250 300

o Simple model proposed
— combining Weaver’s model with Rayleigh equation in complex wavenumbers

o Frequency-dependent attenuation measured experlmentally 0t :
using laser-ultrasonic setup - —anaiyicl (PP

o FEM simulations on
sample-mimicking tessellation
o Excellent agreement between
simulation and experiment
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Conclusion

0 Analysis of L-wave attenuation:

o Importance of two-point correlation function (TPCF)
for microstructure description:
Excellent fit of TPCF-corrected analytical model with FEM simulation

sample microstructure statlstlcal dlgltal twm N two-point correlation |

0o SAW att
o Simple model proposed

Thank you for attentlon'
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— combining Weaver’s model with Rayleigh equation in complex wavenumbers

o Frequency-dependent attenuation measured experlmentally 10*
using laser-ultrasonic setup M

o FEM simulations on
sample-mimicking tessellation

o Excellent agreement between
simulation and experiment
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