may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Modeling method for the simulation of austenitic weld ultrasonic inspection

realistic prediction of echoes and structural noise in weld inspection

P.E. Lhuillier¹, A. Schumm¹, Y. Gelebart¹, J. Dalphin², G. Guillemot³, C-A Gandin³, C. Xue³

 ¹EDF R&D – EDF Lab Les Renardières – Materials and Mechanic of Components department, Moret-sur-Loing, France.
 ²EDF R&D – EDF Lab Saclay - France
 ³MINES ParisTech, PSL Research University, CEMEF, 06904 Sophia Antipolis, France

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Introduction

and context

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Introduction and context

Industrial context

- Qualification and performance demonstration of NDE in nuclear industry
- Many welds to inspect in primary and secondary circuit Physical issues
- Anisotropy and heterogeneity → perturbations of the ultrasonic beam
 Current approach
 - Intensive use of numerical modeling for performances demonstration

<u>Objective</u>

Improvement in the prediction of noise level and complex / spurirous echoes occurrence and intensity in weld ultrasonic inspection

- Include microstructure in FE modeling
- Predict the phenomena related to grain scattering

Presurizer surge line weld (Chassignole et al, 4th ICNDE)

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Modeling approach

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Modeling approch

• Coupling Finite Elements modeling with fine description of the weld microstructure

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

The FE Codes – ATHENA 2D and A3D-CND

- Finite Elements code developped by EDF
- Computes the elastodynamic propagation in heterogeneous, anisotropic materials
- Manages various type of probes (contact, immersion, tofd, tandem, phased array)
- Equiped with a NDT dedicated interface

ATHENA 2D (since 2002)

- 2D Version on regular mesh
- Complex defects managed with the fictitious domain method
- Available in CIVA (module)

A3D-CND (since 2018)

- 3D Version on tetrahedron
- Prototype under developpment and validation

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Modeling approch

• Coupling Finite Elements modeling with fine description of the weld microstructure

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Microstructure

LUS4METALS 2022 Centrale Supelec, Saclay may 5 th 2022	Applications			
Introduction				
Modeling approach	Finite Elements code			
Applications	2 minutes			
Conclusion	1 3D simulation of ultrasonic attenuation			

- homogeneous weld
- 2D simulation of the US inspection of dissimilar weld
- 3D simulation and coupling with numerical simulation of welding (CAFE)

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Application 1

3D simulation of ultrasonic attenuation in homogeneous weld

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

- 3D homogeneous weld microstructure with DREAM3D
- Computation of the apparent attenuation
- Divergence correction with homogeneous media

DREAM3D Weld microstructure

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

3D simulation - Attenuation prediction

- 3D homogeneous weld microstructure with DREAM3D
- Computation of the apparent attenuation
- Divergence correction with homogeneous media
- Nominal grain size 5*0.25 mm

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

3D simulation - Attenuation prediction

- 3D homogeneous weld microstructure with DREAM3D
- Computation of the apparent attenuation
- Divergence correction with homogeneous media
- Nominal grain size 5*0.25 mm

Samples of various orientation taken in a very large weld mold

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Application 2

2D simulation of the US inspection of dissimilar weld

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Inspection configuration

- Inspection of a Nibased alloy weld root
- Seek for a 5mm surface-breaking machined notch •
- Focused US probe at 8 MHz .
- **Bscan** inspection .

L-mode 50° (nominal refraction angle) •

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Microstructure creation

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

plane

٠

Microstructure model – Cristallography and elastic properties

Attribution of grain orientation

Individual grain elastic properties

Local orientations in sub-domain → locally transversely isotropic cristallographic symetry

235	145	145			
145	235	145			
145	145	235			
			126		
				126	
					126

Ni_based alloy Cubic Single crystal elastic properties

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Microstructure model

Real microstructure

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Simulation results - Bscan

Experimetal bscan

- 1. Notch surface breaking echo
- 2. Notch tip diffraction echo (direct L-mode)
- 3. Mode converted L-T mode echo
- 4. Weld chamfer spurious echo
- 5. Complex weld / notch interaction echo

Simulated bscan

- Qualititatively : Identification of 5 different characteristic echoes, visible on both experiments and simulation
- Quantitatively : reasonably good prediction of main echoes intensity

	Echo	Expe vs simu discrepancy
i)	Notch tip diffraction	+3,8 dB
	Weld structural noise	- 1,6 dB

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Application 3

3D simulation and coupling with numerical simulation of welding (CAFE)

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Weld configuration and model

- Multi-layer TIG weld → 3 passes in a weld groove
- 316L stainless steel
- Numerical modeling of welding with the CAFE model

Cellular Automaton Finite Elements

Grain structure modeling in fusion welding processes using a coupled CAFE approach - Application in NDT methods, C. Xue, <u>G. Guillemot</u>, C.-A. Gandin, M. Bellet, LUS4METALS 2022

NEMESIS project Pass 3 Pass Pass 1 3

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Weld configuration and model

- Multi-layer TIG weld → 3 passes in a weld groove
- 316L stainless steel
- Numerical modeling of welding with the CAFE model

Cellular Automaton Finite Elements

Grain structure modeling in fusion welding processes using a coupled CAFE approach - Application in NDT methods, C. Xue, <u>G. Guillemot</u>, C.-A. Gandin, M. Bellet, LUS4METALS 2022

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Numerical results

Time t =1,696µs

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Summary & Conclusion

<u>Method</u>

• Coupling FE modeling of US propagation with virtual microstructure model

Applications

- 3D simulation of ultrasonic attenuation homogeneous weld
- 2D simulation of the US inspection of dissimilar weld
- 3D simulation and coupling with numerical simulation of welding (CAFE)

Results, acheivement

- Enable to predict complex phenomena : attenuation, structural noise, spurious echos
- Reasonbly good agreement of echo amplitude prediction (2D) \rightarrow ~2 to 4 dB max
- Proof of concept of a fully numerical workflow
 CAFE weld model + A3D-CND
 To be compared with experimental data

Limits

- Require a high knowledge of the microstructure, or the manufacturing conditions
- Require high computing ressources (only available on High Performance Computer clusters)

Thank you for your attention

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Annex

may 5th 2022

Introduction

Modeling approach

Applications

Conclusion

Microstructure model – Cristallography and elastic properties

• Hypothesis confirmed by EBSD measurement and previous studies

