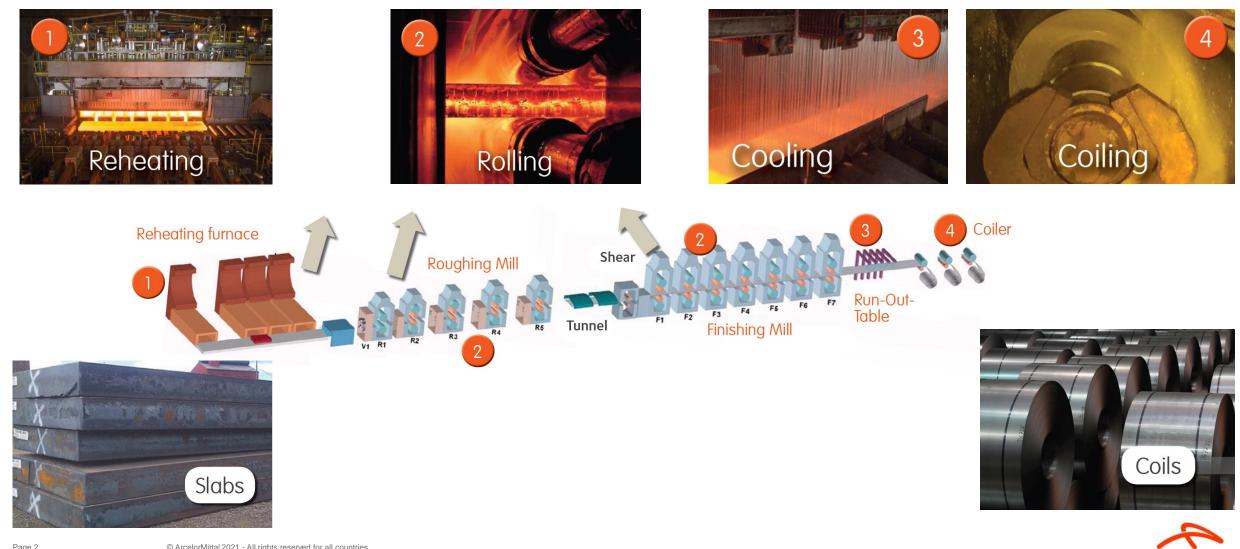


 Conseil national de recherches Canada

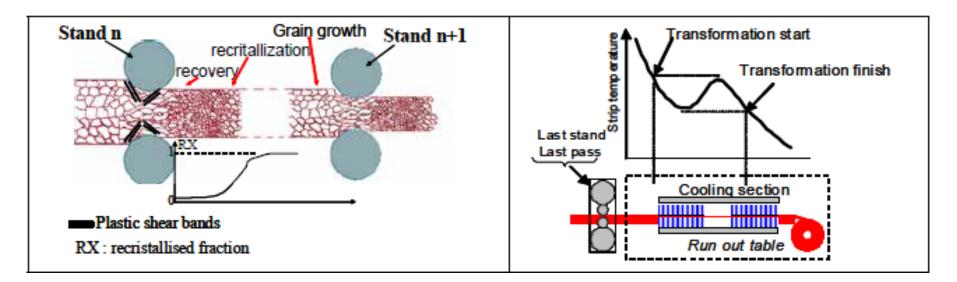


Assessment of Grain Size on Moving Steel Strips during Hot Rolling with Laser Ultrasonics

LUS4Metals, May 5-6 2022 Philip MEILLAND

<u>P. Meilland</u>, M. Nogues, F. Damoiselet, T. Péron, L. Satyanarayan, N. Legrand, N. Naumann, A. Ayeb, D. Levesque, C. Bescond

Quick Overview of a Hot Rolling Mill


Page 2 Date Presentation name © ArcelorMittal 2021 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information

• A mettre en Anglais

ArcelorMittal

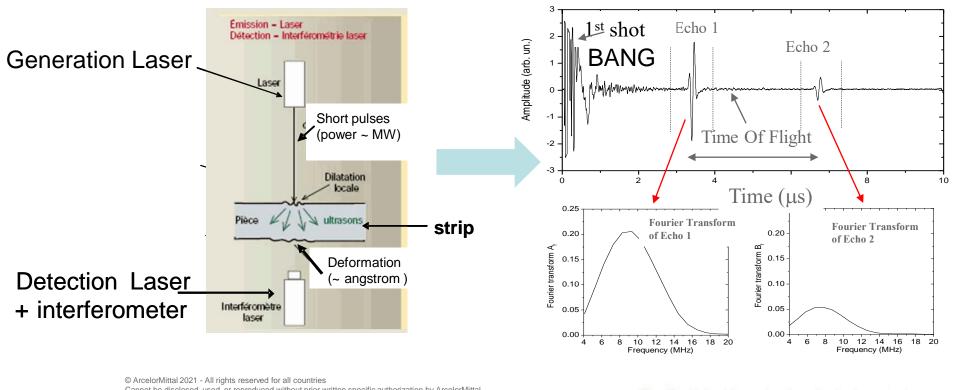
Description of the Project

- Model based assessment of steel microstructural features during Hot Rolling:
 - Roughing / Finishing and Run-Out Table:

- Need to assess actual features with on-line measurement:
 - Roughing & Finishing : Austenitic Grain Size
 - Run-Out-Table : Ferritic Grain Size, Austenitic / Ferritic Phase Proportion

Project Objectives

- Develop a robust and portable Laser Ultrasonic (LUT) sensor to measure simultaneously the steel
 microstructure at several points all along a hot rolling mill (austenite recrystallization & austenite grain size in
 inter stands, phase transformation on the ROT).
- Design and Fabrication of a more robust nomad LUT system :Hardware and Software
- Simplification of safety procedures
 - Easy applicability for industrial trials
- Industrial trials on different grades
 - Inter-stands,
 - run out table
 - and before coiling



LUT Principle

- 1 Hit with generation laser, then listen with detection laser => succession of backwall echoes
- Evolution of spectral content of echoes => linked to grain size (Lord Rayleigh, early 1900's)
- Velocity (time of flight between echoes) => Phase fraction, Recrystallisation

National Research

Council Canada

Conseil national

de recherches Canada

imagine **C**optic


ArcelorMitta

Page 5 Date Presentation name

© Arcelor/Mittal 2021 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by Arcelor/Mittal CONFIDENTIAL - Privileged Information - Arcelor/Mittal proprietary information

Challenge for on-line trials : Single Side Detection & Vibration Handling

- Single side:
 - Avoid blinding detection
 - Need for different wavelengths
- Vibrations, fluttering :
 - Classical interferometric devices not suited
- Use of long pulse detection laser, with nonlinear optics two wave mixing (TWM) technique
 - Generation Laser and PDL lasers wavelength 1064 nm
 - Effective detection wavelength 532 nm
- Avoid cobbling collision
 - Working distance 1 m
- Safety Aspects
 - Minimize Safety Perimeter by design
 - Add conditions for laser firing to ease safety procedures
 - Product presence detection (pyrometry) to open shutters
- Not to forget : Heat Shielding!

Page 6 Date Presentation name © ArcelorMittal 2021 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information

National Research Council Canada

Conseil national de recherches Canada

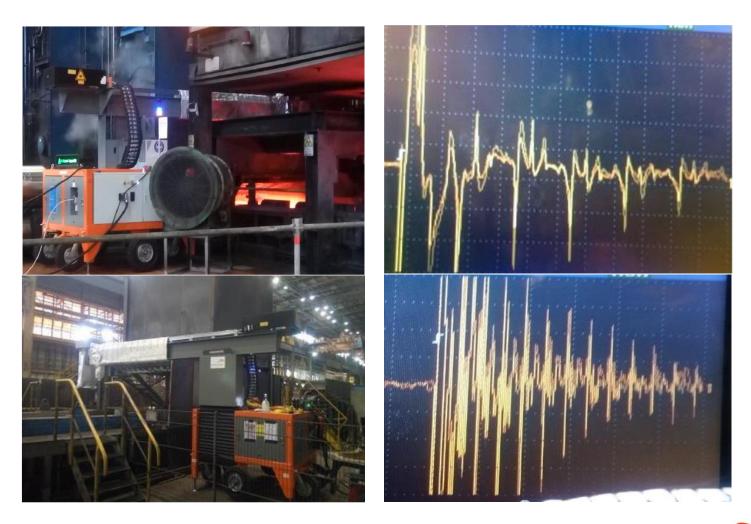
Main Achievements

Construction of Laser Ultrasonic Trolley

- Optical fibres linking Main Body to Optical Head
- On Main Trolley Body:
 - Lasers
 - Detection Module
 - Data acquisition
 - Control panel
- At beam extremity:
 - Optical head
 - Pyrometers

© ArcelorMittal 2021 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information

National Research Council Canada de recherches Canada

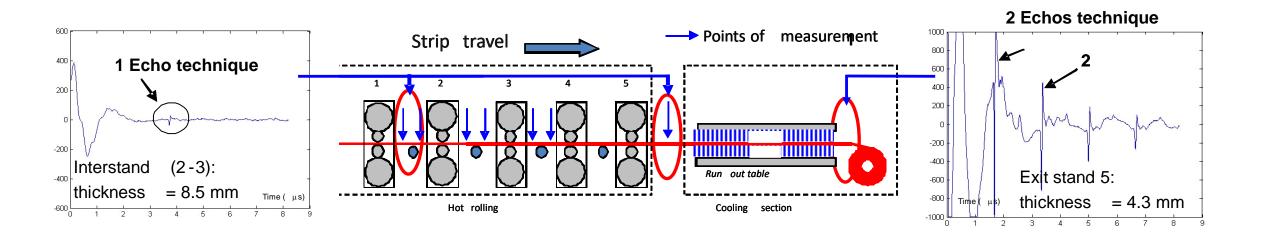


Action!... with real-time visualisation of on-line A-scans

At Last Stand, •

Before Down Coiler •

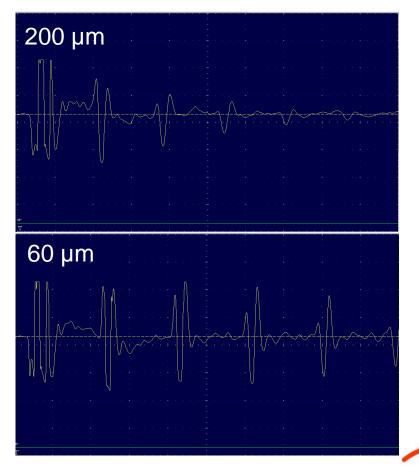
© ArcelorMittal 2021 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information


de recherches Canada

Summary of Plant Trials (Sept. & Nov 2019)

- Trials at 3 locations: stand 1, stand 5, coiler
- Measurements along ~80 coils
 - Low-Carbon grades
 - A-scans analysis to derive Grain Size

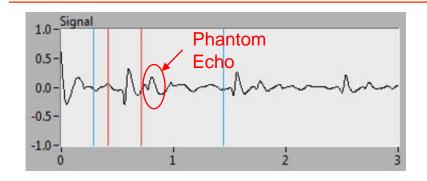
© ArcelorMittal 2021 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information

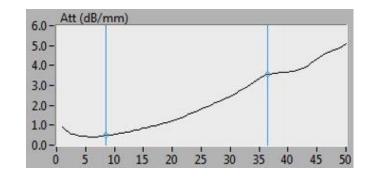


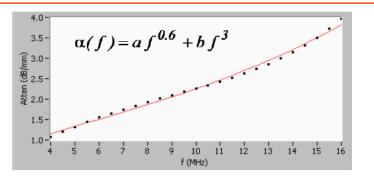
Effect of Grain Size on Attenuation

- Example from work
 - 2.5 mm samples, GS 60 and 200 μm
 - Single frequency PZT transducers
- Attenuation of Echoes with time
 - Increases with grain size
 - Increases with frequency
- Spectral content of consecutive echoes allows deriving grain size related information

20Mhz

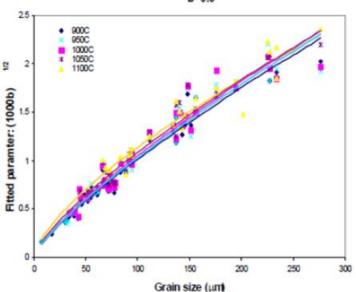

© ArcelorMittal 2021 - All rights reserved for all countries Cannot be disclosed, used, or reproduced without prior written specific authorization by ArcelorMittal CONFIDENTIAL - Privileged Information - ArcelorMittal proprietary information





ArcelorMitta

Spectral attenuation and calibration curve for EHN Trials

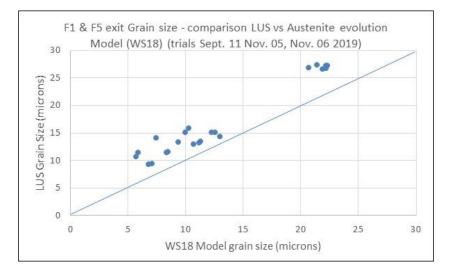

- From A-scan segment around backwall echoes •
 - Derive spectral attenuation with FFT
 - Fit parametric model in given frequency range
 - Derive grain size from parameter b
- Review of method •

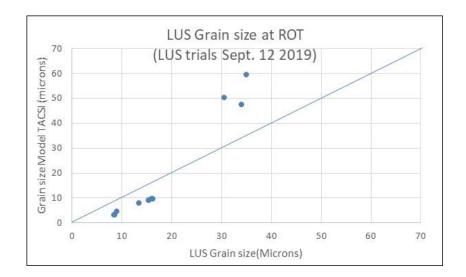
Page 12

Date

- FFT not optimal for pulses
- HSM steel grain sizes at low end of ranges (accuracy of model?) —
- Issue with «Phantom Echo » •
 - Ongoing identification of source
 - **Degrades FFT estimation**

b^0.5

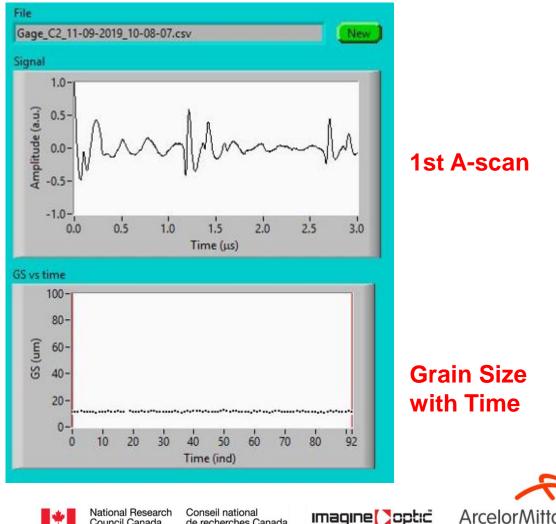




- Encouraging results : •
 - Grain sizes in the same range, yet with discrepancies
 - Issue with Phantom Pulse and quality of FFT approach
 - Possible lack of accuracy of link between fit parameter and grain size
 - TACSI model possibly not properly tuned for large grain sizes

Metallographies only allow confirming predictions Be it models or LUT data

Council Canada



Evolution of Grain Size along coil length - example

- Need for ascertained product presence when laser • firing:
 - On-spot product presence
 - Lead time to re-ignite laser at coil head
 - Loss of initial length

Laser must be turned off before coil end => again slight loss

No available signals at extremities => constant • features in recorded segment of strip

de recherches Canada

Council Canada

Conseil national de recherches Canada

Conclusions & Prospects

General conclusions

- Design and Construction of a Transportable Laser Ultrasonic System
 - For monitoring steel microstructural features during hot rolling of strips
- Industrial Trials in EisenHuettenStadt
 - 3 campaigns, sept. Nov 2019
 - Exits of F1, F5 stands, and of ROT
 - 3 grades : S420 ; S460 and DP780
- Signal analysis routines to derive grain size
 - Encouraging results obtained with on-line signal recordings
 - « Phantom Echo » to understand and mitigate
 - Improvements to consider on signal processing approach

=> Compliance with Project Objectives

Page 16 Date Presentation name

Prospects

- Nomad LUT Instrument ready for application in HSM
 - Process Snapshots, with required validation via metallographies, for all HSMs?
 - Tuning/Validation of metallurgical models
- Preparation of Laser Ultrasonics application in CAL / CGL furnaces
 - Monitor & help control metallurgical transformations during thermal cycle
 - Phase transformation for AHSS
 - Recrystallisation for HSLA (µ alloyed)
 - Possible interest of a dual-head system
- Monitor phase transformation during hot rolling of heavy beam blanks
 - Re-ignite contacts with Differdange
 - Interest of dual head (« multiplexed ») system for central web and flange

Conseil national de recherches Canada

This work received financial support from the European Commission under Grant Agreement number RFSR-CT-2015-00007 "MicroControl-PLUS".

The End – Ready for Questions