The potential of laser ultrasound for sustainability in metal production and processing

5th International Workshop on Laser-Ultrasound for Metals 5-6 May 2022, Gif-sur-Yvette, France

Dr. Edgar Scherleitner – Area Manager Acoustics

- 1. Introduction of RECENDT
- 2. Green deal and arising needs for steel production
- 3. Contribution of LUS to challenges of steel production
- **4**. Quality assurance in steel processing by LUS

Location of RECENDT

Altenberger Straße 69, 4040 Linz, Austria Tel.: +43 (0) 732 / 2468 – 4600 E-Mail: <u>office@recendt.at</u> Web: <u>https://www.recendt.at</u>

RECENDT: located at JKU in Science Park 2

RECENDT: REsearch CEnter for NDT

Laser Ultrasound (LUS)

Laser induced ultrasound for defect detection and material characterization, prototype development, automation, robotics, laser development, piezo ultrasound, acoustic emission

Physical and Computational Acoustics (PCA)

Investigation of elastic wave phenomena, modelling, simulation, experimental techniques, medical ultrasound, photoacoustic and photothermal reconstruction

Infrared- and Raman Spectroscopy (IR)

Method for in-line process control and quality assurance like analysis of chemical compositions

Terahertz Technology (THz)

Technology for penetrating imaging and spectroscopy of non-conductive materials

Optical Coherence Tomography (OCT)

Technology for high-resolution imaging of non-conductive materials

Area Acoustics

Area Optics

Global net anthropogenic GHG emissions 1990-2019

Paris Agreement:

Next step: reduce emissions by at least 55% by 2030 from 1990 levels.

Source: Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2022 https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_FinalDraft_FullReport.pdf

European Green Deal: climate neutral by 2050!

CO₂ emissions share by sectors

Source: Wood Mackenzie

Source: Wood Mackenzie

https://www.woodmac.com/news/opinion/is-green-hydrogen-metallurgical-coals-kryptonite

Steel production: H2-based + increased scrap usage

Source: McKinsey

https://www.mckinsey.com/industries/metals-and-mining/our-insights/tackling-the-challengeof-decarbonizing-steelmaking

European Green Deal: climate neutral by 2050!

Source: Wood Mackenzie https://www.woodmac.com/news/opinion/is-green-hydrogen-metallurgical-coals-kryptonite

© RECENDT, Slide #8

5th International Workshop on Laser-Ultrasound for Metals, France, 2022

Contribution of LUS to challenges of steel production

Contribution of LUS to challenges of steel production

Example in Austria:

- 15% (12 Mt) of all CO₂ emissions by one single steel producer - voestalpine

Goals:

- 2030: reduce CO₂ emissions of 30%
- 2050: Climate neutral steel production

Major needs:

- Transformation to H2 usage and more recycled scrap

Challenge by scrap addition:

- Undesirable elements brought in which influence steel properties

Increasing importance of LUS:

- High-throughput in-situ methods possible
- Correlations between LUS data and
 - phase transformations/fractions
 - o grain size distribution/growth
 - \circ $\;$ texture and recrystallization kinetics

Source: voestalpine https://www.facebook.com/voestalpine/

LUS to support tuning of thermal treatment cycles

Dilatometer as thermal simulator combined with laser ultrasonic equipment used at RECENDT

Based on LINSEIS DIL/L78 Rita:

- \checkmark Flexible system
- ✓ Small footprint
- ✓ Typ. heating rate: \leq 2500K/s
- ✓ Deformation force: \leq 25kN
- ✓ Deformation rate: ≤125mm/s

LUS to support tuning of thermal treatment cycles

Vacuum chamber with inductive coil providing laser access for cuboid samples

German patent: "Vorrichtung Und Verfahren Zur Bestimmung Elastischer Eigenschaften Und/Oder von Gefügezuständen von Proben." DE102017216714

LUS to support tuning of thermal treatment cycles

Sheet steel samples are heated by flat coil and monitored from top

Excitation: Quantel Q-smart (532nm) – 75mJ / pulse Detection: Tecnar 10Hz (1064nm) – 70mJ / pulse

© RECENDT, Slide #13

5th International Workshop on Laser-Ultrasound for Metals, France, 2022

Modelling of useful correlations

Of metallurgical interest:

- phase transformations/fractions
- grain size distribution/growth
- recrystallization kinetics

Models use:

Influence on LUS propagation:

- elastic parameters, density, sample geometry
- grain size distribution
- grain morphology
- crystallographic orientation distribution
- o others: precipitations, impurities, defects,...

ultrasonic attenuation

speed of sound

5th International Workshop on Laser-Ultrasound for Metals, France, 2022

© RECENDT, Slide #14

Austenite grain growth

Austenite grain growth

Experiment:

- Plain Carbon Steel 1.1191 (C45, AISI 1045)
- Expected average grain diameter from 5 to 120 μm

Proceeding:

 $1. \quad \Delta \alpha' = a + b f^n$

Ref: S. Sakar, A. Moreau, M. Militzer, W.J. Poole, Metallurgical and Materials Transactions, 39, 4, pp. 897-907, 2008

- **2.** Guess $n \in [2,4]$
- 3. Get b from fit of attenuation at calibration points
- 4. Calculate error of grain size $D_i = \sqrt[n-1]{\frac{b}{c}} + D_0^{n-1}$
- 5. Go to 2.

Ref: C. Kerschbaummayr, M. Ryzy, B. Reitinger, M. Hettich, J. Džugan, T. Wydra, E. Scherleitner, ASME Proc., QNDE 2021

Verification:

Recrystallization

© RECENDT, Slide #18

Anisotropy of cold rolled/annealed sheet steel

Rotational setup (ex-situ):

Line excitation for more directed SAW

Anisotropy of cold rolled/annealed sheet steel

Annealed:

Reduced anisotropy

© RECENDT, Slide #20

Initial condition / annealed:

© RECENDT, Slide #21

Validity check by comparison of LUS measurement before and after annealing on same sample:

LUS measurements

As expected: 2nd run on same sample shows only little change during annealing.

Quality assurance in steel processing by LUS (only small excerpt)

Induction hardened steel parts are scanned by LUS

10.0

12.5

2.5

5.0

7.5

lateral position (mm)

10x15mm

2.5

- 2.0

0.5

15.0

⁵⁰ ¹² ¹⁰ ¹⁰ ¹⁰

Defect detection in welded joints

Step weld seams

Spot welds

t

© RECENDT, Slide #25

5th International Workshop on Laser-Ultrasound for Metals, France, 2022

Research of phenomena also by simulations

average in z-direction

RECENDT's scientists:

Bernhard Reitinger Clemens Grünsteidl Martin Ryzy Christian Kerschbaummayr Wolfgang Haderer Mike Hettich Georg Watzl

voestalpine

ONE STEP AHEAD.

Financial support was provided by the Austrian research funding association (FFG) under the scope of the COMET programme within the research project "Photonic Sensing for Smarter Processes (PSSP)" (contract number 871974). This programme is promoted by BMK, BMDW, the federal state of Upper Austria and the federal state of Styria, represented by SFG. ober österreich

This project is co-financed by research subsidies granted by the government of Upper Austria.

Member of INNOVATION NETWORK

The Research Center for Non Destructive Testing GmbH is member of the UAR Innovation Network and is supported by the strategic economic- and research program "Innovative Upper Austria 2020" of the province of Upper Austria.

Contacts

- Edgar Scherleitner
 - Acoustics
 - edgar.scherleitner@recendt.at
 - +43 (732) 2468 4653

- Peter Burgholzer
 - CEO
 - peter.burgholzer@recendt.at
 - +43 (732) 2468 4601

www.recendt.at

A – 4040 Linz, Altenberger Straße 69, Science Park 2

All rights reserved, especially the rights to copy, distribute or translate contents of this document. No parts of this document (theses slides) may be reproduced, copied or distributed without the written permission from Research Center for Non Destructive Testing GmbH (RECENDT).

© RECENDT, Slide #30