High precision measurements of elastic anisotropy in metals

Bevis Hutchinson, Mikael Malmström, Anton Jansson, Peter Lundin
Origins of anisotropy

• All (single) crystals are elastically anisotropic so wave velocities inside them vary with direction.

• In a random polycrystal these effects would cancel out leading to isotropy and invariant wave velocities.

• However, solid polycrystals almost always contain preferred orientation (texture) so some of the crystal property is inherited by the material and wave velocities then vary with direction. Potentially, this gives us a possibility to characterise the texture from LUS measurements.

• The magnitude of observed values depends on the texture strength and the intrinsic crystalline behaviour. Sometimes the variation is quite small so high precision is necessary in the measurements.
Practical measurement of anisotropy

Since anisotropy means different values in different directions it is evident that it cannot be quantified with a single measurement. Various approaches have been suggested:

2. Material static while changing the wave path using a masked axicon lens or galvano-mirror optics (Lèvesque et al. 2011, Malmström et al. this conference)

3. Combining different wave types with the same direction of propagation such as $S_0 + S_{H0}$ or $S_0 + S_{H0} + P$ or $P + S$ waves (Thompson et al. 1989, Kawashima 1990, Kawashima et al. 1993, Moreau et al. 1999)

4. Successive P-wave arrivals having the same points for laser generation and detection but different path directions (Bate et al. 2017)
Precise measurement of anisotropy

Usually the greatest source of error in LUS measurement comes from distance between the generation and detection lasers.

Circular cylinder manufactured by turning with a lathe gives equal path lengths for all directions when the specimen is rotated.

Strong P-wave reflections provide accurate determination of passage time.
Application to 67% laboratory rolled 316 stainless steel plate

Measured and calculated velocities for rotations around the transverse direction TD

Measured and calculated velocities for rotations around the rolling direction RD

Calculated values are based on textures determined from EBSD measurements together with values of density and crystal coefficients (c_{11}, c_{12}, c_{44}) from the literature.

The polycrystal model uses a Hill approximation. This may be the source of the consistent difference between the absolute values of the curves.
Application to martensite

- Fundamental data about elasticity in martensite is lacking due to the impossibility of preparing single crystals.

- There is also dispute about the true crystallography of low carbon 'lath' martensite—whether tetragonal or cubic—so calculations of all types are unreliable.

- Polycrystalline measurements could give indications but the texture is always very weak so high precision is necessary.

- After tempering at increasing temperatures the structure changes progressively to ordinary bcc ferrite.
Measurements on martensite

Measurements made at the plate centre in the RD-TD plane (specimen rotation around ND)

High reproducibility on repeated measurements

Low level of anisotropy – Maximum variation with angle only 0.12% but with precision of ~0.01%

The stiffness and wave velocity increases with tempering (~0.5%) but the anisotropy is almost identical for all structures from fresh martensite to bcc ferrite

7mm 0.3%C steel hot rolled and directly quenched plate
Samples tempered for 1 hour at indicated temperatures
Measurements using the galvano-mirror

Generating laser is steered with the galvano-mirror while the detection laser is fixed in the central position.

Burn patterns from the generating laser
Application to 67% laboratory rolled 316 stainless steel plate

Variation in velocity for directions in the ND-RD plane

Variation in velocity for directions in the ND-TD plane

Also here, density and crystal coefficients are obtained from the literature and a Hill approximation is used for calculating polycrystalline elasticity. Texture data are from EBSD measurements. For geometrical reasons it is not possible to measure signals at high angles to the plate normal direction.
Example of ODF texture coefficients for cold rolled steel (typically 179 different coefficients)

<table>
<thead>
<tr>
<th>i</th>
<th>L</th>
<th>Mu</th>
<th>Nu</th>
<th>Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0.980</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>-0.594</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>-0.980</td>
</tr>
</tbody>
</table>

These are the only ones that actually affect the elastic properties.

etc
Plotting the same ODF with different expansions

\[l_{\text{max}} = 22 \] normal limit

\[l_{\text{max}} = 8 \] smoothened

\[l_{\text{max}} = 4 \] the best we can get with US measurements
Conclusions

• These instrumental developments open the way to very accurate measurements of elastic anisotropy in the laboratory
• There is good agreement between wave velocity values from LUS and calculations based on measured textures in the same material
• Nevertheless, textures derived from wave velocity measurements can only be approximate
• Using the galvano-mirror method, anisotropy and texture can be quantified reliably under industrial production conditions
• Elastic stiffness of martensite is somewhat lower than in standard bcc ferritic steel but the crystalline anisotropy in these appears to be closely similar